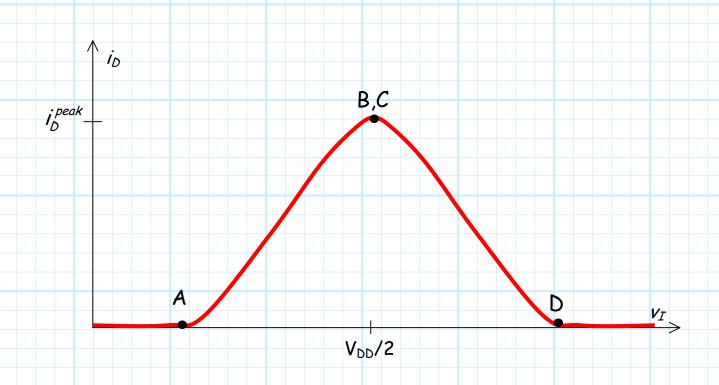

Peak CMOS Current

Q: What do you mean, "peak CMOS current"? I thought that the drain current of a CMOS inverter was i_D =0??

A: The drain current i_D is zero specifically when $v_I = 0$ or $v_I = V_{DD}$. But, consider when v_I is some value **between** 0 and V_{DD} .


11/11/2004

Note it is apparent from the transfer function that:

- 1. If $V_{\tau} < v_{I} < V_{DD}/2$, then Q_{N} is in saturation and Q_{P} is in triode.
- 2. If $v_I = V_{DD}/2$, then Q_N and Q_P are both in saturation.
- 3. If $V_{DD}/2 < V_I < (V_{DD} V_t)$, then Q_N is in **triode** and Q_P is in **saturation**.

Note that for each of these three cases, a conducting channel is present in both transistors Q_N and Q_P .

The drain current id is therefore non-zero!!!

Note that the **peak current** i_D^{peak} occurs when $v_I = V_{DD}/2$.

Q: I can't wait to find out the value of this peak current in peak!!

A: The answer is rather obvious! The peak current occurs when $v_I = V_{DD}/2$. For that situation, we know that both transistor Q_N and Q_P are in saturation—and we know the current through a MOSFET when in saturation is:

"K times the excess gate voltage squared"

For this case, $v_{GSN} = v_I = V_{DD}/2$, thus:

$$i_D^{peak} = K_n (V_{GSN} - V_{tn})^2$$

$$= K (V_{DD}/2 - V_t)^2$$

If we wish to **minimize** the **dynamic** power dissipation P_D , then we need to **minimize** this current value (e.g., minimize K, or maximize V_t).